Copied to
clipboard

G = C3×C52⋊C4order 300 = 22·3·52

Direct product of C3 and C52⋊C4

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3×C52⋊C4, C154F5, C526C12, (C5×C15)⋊8C4, C52(C3×F5), C5⋊D5.3C6, (C3×C5⋊D5).4C2, SmallGroup(300,31)

Series: Derived Chief Lower central Upper central

C1C52 — C3×C52⋊C4
C1C5C52C5⋊D5C3×C5⋊D5 — C3×C52⋊C4
C52 — C3×C52⋊C4
C1C3

Generators and relations for C3×C52⋊C4
 G = < a,b,c,d | a3=b5=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b2, dcd-1=c3 >

25C2
2C5
2C5
25C4
25C6
5D5
5D5
10D5
10D5
2C15
2C15
25C12
5F5
5F5
5C3×D5
5C3×D5
10C3×D5
10C3×D5
5C3×F5
5C3×F5

Character table of C3×C52⋊C4

 class 123A3B4A4B5A5B5C5D5E5F6A6B12A12B12C12D15A15B15C15D15E15F15G15H15I15J15K15L
 size 125112525444444252525252525444444444444
ρ1111111111111111111111111111111    trivial
ρ21111-1-111111111-1-1-1-1111111111111    linear of order 2
ρ311ζ3ζ32-1-1111111ζ3ζ32ζ6ζ65ζ65ζ6ζ32ζ32ζ32ζ32ζ3ζ3ζ3ζ3ζ3ζ3ζ32ζ32    linear of order 6
ρ411ζ3ζ3211111111ζ3ζ32ζ32ζ3ζ3ζ32ζ32ζ32ζ32ζ32ζ3ζ3ζ3ζ3ζ3ζ3ζ32ζ32    linear of order 3
ρ511ζ32ζ3-1-1111111ζ32ζ3ζ65ζ6ζ6ζ65ζ3ζ3ζ3ζ3ζ32ζ32ζ32ζ32ζ32ζ32ζ3ζ3    linear of order 6
ρ611ζ32ζ311111111ζ32ζ3ζ3ζ32ζ32ζ3ζ3ζ3ζ3ζ3ζ32ζ32ζ32ζ32ζ32ζ32ζ3ζ3    linear of order 3
ρ71-111-ii111111-1-1-ii-ii111111111111    linear of order 4
ρ81-111i-i111111-1-1i-ii-i111111111111    linear of order 4
ρ91-1ζ3ζ32-ii111111ζ65ζ6ζ43ζ32ζ4ζ3ζ43ζ3ζ4ζ32ζ32ζ32ζ32ζ32ζ3ζ3ζ3ζ3ζ3ζ3ζ32ζ32    linear of order 12
ρ101-1ζ32ζ3i-i111111ζ6ζ65ζ4ζ3ζ43ζ32ζ4ζ32ζ43ζ3ζ3ζ3ζ3ζ3ζ32ζ32ζ32ζ32ζ32ζ32ζ3ζ3    linear of order 12
ρ111-1ζ3ζ32i-i111111ζ65ζ6ζ4ζ32ζ43ζ3ζ4ζ3ζ43ζ32ζ32ζ32ζ32ζ32ζ3ζ3ζ3ζ3ζ3ζ3ζ32ζ32    linear of order 12
ρ121-1ζ32ζ3-ii111111ζ6ζ65ζ43ζ3ζ4ζ32ζ43ζ32ζ4ζ3ζ3ζ3ζ3ζ3ζ32ζ32ζ32ζ32ζ32ζ32ζ3ζ3    linear of order 12
ρ13404400-1-14-1-1-1000000-1-1-1-1-1-1-1-1-14-14    orthogonal lifted from F5
ρ14404400-14-1-1-1-1000000-1-1-1-1-1-1-1-14-14-1    orthogonal lifted from F5
ρ154044003+5/2-1-13-5/2-1-5-1+50000003+5/23-5/2-1-5-1+53+5/23-5/2-1-5-1+5-1-1-1-1    orthogonal lifted from C52⋊C4
ρ16404400-1-5-1-1-1+53-5/23+5/2000000-1-5-1+53-5/23+5/2-1-5-1+53-5/23+5/2-1-1-1-1    orthogonal lifted from C52⋊C4
ρ17404400-1+5-1-1-1-53+5/23-5/2000000-1+5-1-53+5/23-5/2-1+5-1-53+5/23-5/2-1-1-1-1    orthogonal lifted from C52⋊C4
ρ184044003-5/2-1-13+5/2-1+5-1-50000003-5/23+5/2-1+5-1-53-5/23+5/2-1+5-1-5-1-1-1-1    orthogonal lifted from C52⋊C4
ρ1940-2+2-3-2-2-300-14-1-1-1-1000000ζ6ζ6ζ6ζ6ζ65ζ65ζ65ζ65-2+2-3ζ65-2-2-3ζ6    complex lifted from C3×F5
ρ2040-2+2-3-2-2-300-1-14-1-1-1000000ζ6ζ6ζ6ζ6ζ65ζ65ζ65ζ65ζ65-2+2-3ζ6-2-2-3    complex lifted from C3×F5
ρ2140-2-2-3-2+2-300-1-14-1-1-1000000ζ65ζ65ζ65ζ65ζ6ζ6ζ6ζ6ζ6-2-2-3ζ65-2+2-3    complex lifted from C3×F5
ρ2240-2-2-3-2+2-300-14-1-1-1-1000000ζ65ζ65ζ65ζ65ζ6ζ6ζ6ζ6-2-2-3ζ6-2+2-3ζ65    complex lifted from C3×F5
ρ2340-2-2-3-2+2-3003-5/2-1-13+5/2-1+5-1-5000000ζ3ζ533ζ52+2ζ3ζ3ζ543ζ5+2ζ33ζ54+2ζ3ζ53ζ53+2ζ3ζ52ζ32ζ5332ζ52+2ζ32ζ32ζ5432ζ5+2ζ3232ζ54+2ζ32ζ532ζ53+2ζ32ζ52ζ6ζ6ζ65ζ65    complex faithful
ρ2440-2+2-3-2-2-300-1+5-1-1-1-53+5/23-5/200000032ζ54+2ζ32ζ532ζ53+2ζ32ζ52ζ32ζ5432ζ5+2ζ32ζ32ζ5332ζ52+2ζ323ζ54+2ζ3ζ53ζ53+2ζ3ζ52ζ3ζ543ζ5+2ζ3ζ3ζ533ζ52+2ζ3ζ65ζ65ζ6ζ6    complex faithful
ρ2540-2-2-3-2+2-300-1+5-1-1-1-53+5/23-5/20000003ζ54+2ζ3ζ53ζ53+2ζ3ζ52ζ3ζ543ζ5+2ζ3ζ3ζ533ζ52+2ζ332ζ54+2ζ32ζ532ζ53+2ζ32ζ52ζ32ζ5432ζ5+2ζ32ζ32ζ5332ζ52+2ζ32ζ6ζ6ζ65ζ65    complex faithful
ρ2640-2+2-3-2-2-3003-5/2-1-13+5/2-1+5-1-5000000ζ32ζ5332ζ52+2ζ32ζ32ζ5432ζ5+2ζ3232ζ54+2ζ32ζ532ζ53+2ζ32ζ52ζ3ζ533ζ52+2ζ3ζ3ζ543ζ5+2ζ33ζ54+2ζ3ζ53ζ53+2ζ3ζ52ζ65ζ65ζ6ζ6    complex faithful
ρ2740-2-2-3-2+2-300-1-5-1-1-1+53-5/23+5/20000003ζ53+2ζ3ζ523ζ54+2ζ3ζ5ζ3ζ533ζ52+2ζ3ζ3ζ543ζ5+2ζ332ζ53+2ζ32ζ5232ζ54+2ζ32ζ5ζ32ζ5332ζ52+2ζ32ζ32ζ5432ζ5+2ζ32ζ6ζ6ζ65ζ65    complex faithful
ρ2840-2+2-3-2-2-3003+5/2-1-13-5/2-1-5-1+5000000ζ32ζ5432ζ5+2ζ32ζ32ζ5332ζ52+2ζ3232ζ53+2ζ32ζ5232ζ54+2ζ32ζ5ζ3ζ543ζ5+2ζ3ζ3ζ533ζ52+2ζ33ζ53+2ζ3ζ523ζ54+2ζ3ζ5ζ65ζ65ζ6ζ6    complex faithful
ρ2940-2+2-3-2-2-300-1-5-1-1-1+53-5/23+5/200000032ζ53+2ζ32ζ5232ζ54+2ζ32ζ5ζ32ζ5332ζ52+2ζ32ζ32ζ5432ζ5+2ζ323ζ53+2ζ3ζ523ζ54+2ζ3ζ5ζ3ζ533ζ52+2ζ3ζ3ζ543ζ5+2ζ3ζ65ζ65ζ6ζ6    complex faithful
ρ3040-2-2-3-2+2-3003+5/2-1-13-5/2-1-5-1+5000000ζ3ζ543ζ5+2ζ3ζ3ζ533ζ52+2ζ33ζ53+2ζ3ζ523ζ54+2ζ3ζ5ζ32ζ5432ζ5+2ζ32ζ32ζ5332ζ52+2ζ3232ζ53+2ζ32ζ5232ζ54+2ζ32ζ5ζ6ζ6ζ65ζ65    complex faithful

Permutation representations of C3×C52⋊C4
On 30 points - transitive group 30T73
Generators in S30
(1 13 8)(2 14 9)(3 15 10)(4 11 6)(5 12 7)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 20 19 18 17)(21 25 24 23 22)(26 30 29 28 27)
(1 16)(2 19 5 18)(3 17 4 20)(6 25 10 22)(7 23 9 24)(8 21)(11 30 15 27)(12 28 14 29)(13 26)

G:=sub<Sym(30)| (1,13,8)(2,14,9)(3,15,10)(4,11,6)(5,12,7)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,20,19,18,17)(21,25,24,23,22)(26,30,29,28,27), (1,16)(2,19,5,18)(3,17,4,20)(6,25,10,22)(7,23,9,24)(8,21)(11,30,15,27)(12,28,14,29)(13,26)>;

G:=Group( (1,13,8)(2,14,9)(3,15,10)(4,11,6)(5,12,7)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,20,19,18,17)(21,25,24,23,22)(26,30,29,28,27), (1,16)(2,19,5,18)(3,17,4,20)(6,25,10,22)(7,23,9,24)(8,21)(11,30,15,27)(12,28,14,29)(13,26) );

G=PermutationGroup([[(1,13,8),(2,14,9),(3,15,10),(4,11,6),(5,12,7),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,20,19,18,17),(21,25,24,23,22),(26,30,29,28,27)], [(1,16),(2,19,5,18),(3,17,4,20),(6,25,10,22),(7,23,9,24),(8,21),(11,30,15,27),(12,28,14,29),(13,26)]])

G:=TransitiveGroup(30,73);

Matrix representation of C3×C52⋊C4 in GL4(𝔽61) generated by

13000
01300
00130
00013
,
60100
164400
59441818
1714360
,
01800
441700
441701
1186043
,
00601
1815943
00600
171600
G:=sub<GL(4,GF(61))| [13,0,0,0,0,13,0,0,0,0,13,0,0,0,0,13],[60,16,59,17,1,44,44,1,0,0,18,43,0,0,18,60],[0,44,44,1,18,17,17,18,0,0,0,60,0,0,1,43],[0,18,0,17,0,1,0,1,60,59,60,60,1,43,0,0] >;

C3×C52⋊C4 in GAP, Magma, Sage, TeX

C_3\times C_5^2\rtimes C_4
% in TeX

G:=Group("C3xC5^2:C4");
// GroupNames label

G:=SmallGroup(300,31);
// by ID

G=gap.SmallGroup(300,31);
# by ID

G:=PCGroup([5,-2,-3,-2,-5,-5,30,723,173,3004,1014]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^5=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^2,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of C3×C52⋊C4 in TeX
Character table of C3×C52⋊C4 in TeX

׿
×
𝔽